NOS BIG SHOT MULTI-CARBURETOR INJECTOR PLATE INSTALLATION INSTRUCTIONS P/N A5079-SNOS ## FOR NOS KIT P/N 12685NOS ## 1.0 Injector Plate Mounting - 1. Remove the carburetor inlet ducting and air cleaner. - 2. Disconnect the throttle linkage from the carburetor. - 3. Disconnect the fuel line from the carburetor. - 4. Remove the carburetor. - 5. Remove the stock carburetor studs. - 6. Install the extended carburetor studs [3]. - 7. Install the injector plate [1] and gaskets [2] on the intake manifold with the NOS label facing UP. - 8. Install the carburetor. - 9. Connect the throttle linkage. - 10. Repeat steps 1 through 9 for additional carburetors. ### 2.0 Nitrous Solenoid Installation CAUTION! Do not overtighten the vise in the following procedure or the solenoid will be damaged. NOTE: Use Teflon paste only on pipe threads. - 1. Clamp the nitrous solenoid base in a bench vise. - 2. Install 6AN nitrous filter fitting in the inlet port of the nitrous solenoid. - 3. Install blue 1/8-inch NPT X 4AN Flare TEE [4] in outlet port of nitrous solenoid. - 4. Attach nitrous solenoid to the solenoid mounting bracket [8] with two screws [9] and remove solenoid assembly from vise. - 5. Install proper nitrous jet [10] in blue 90° fitting on injector plate, with beveled edge out. - 6. Connect 18-inch blue 4AN X 3AN Hose [5] to TEE fitting in outlet port of nitrous solenoid and to blue 90° fitting on injector plate. - 7. Repeat steps 5 and 6 for additional injector plate. #### 3.0 Fuel Solenoid Installation CAUTION! Do not overtighten the vise in the following procedure or the solenoid will be damaged. **NOTE:** Use Teflon paste only on pipe threads. - 1. Clamp the fuel solenoid base in a bench vise. - 2. Install the fuel filter in the inlet port of the fuel solenoid. - 3. Install red 1/8-inch NPT X 4AN Flare Tee [6] in outlet port of fuel solenoid. - 4. Attach fuel solenoid to the solenoid mounting bracket [8] with two screws [9] and remove solenoid assembly from vise. - 5. Install proper fuel jet [10] in red 90° fitting on injector plate, with beveled edge out. - 6. Connect 18-inch red 4AN X 3AN Hose [7] to TEE fitting in outlet port of fuel solenoid and to red 90° fitting on injector plate. - 7. Repeat steps 5 and 6 for additional injector plate. Suggested Tuning Combinations for NOS Big Shot – Multi-Carb Carburetor System | - aggoria rannig comunications for tree big ones, main can a cantainette eyetem | | | | | | | | | | |---|------------------|-------|---------------------|----------|-------------------|--|--|--|--| | EXTRA | JETTING | | | IGNITION | NGK OR EQUIVALENT | | | | | | HP | N ₂ 0 | FUEL | FUEL OCTANE (R+M/2) | TIMING | SPARK PLUG | | | | | | Multiple Carburetor Big Shot (Stage 2) | | | | | | | | | | | 200 | 0.052 | 0.049 | 110+ Race Fuel | * -9 | | | | | | | 225 | 0.059 | 0.055 | 110+ Race Fuel * | | -9 | | | | | | 250 | 0.065 | 0.061 | 112+ Race Fuel | * | -10 | | | | | | 300 | 0.073 | 0.067 | 114+ Race Fuel | * | -10 | | | | | | 325 | 0.085 | 0.077 | 114+ Race Fuel | * -10 | | | | | | | 350 | 0.093 | 0.085 | 114+ Race Fuel | * | -11 | | | | | *See Timing recommendation chart below Determining the correct ignition timing for an engine using nitrous oxide is not cut and dry as it is dependent on many variables. Variables such as piston design, combustion chamber size and design, valve angle, fuel type, nitrous system design, and other factors all play a critical role as to what timing a specific engine/vehicle combination needs. When running larger amounts of nitrous, it is critical that the proper ignition timing be run as well as the proper spark plug heat range. There is one specific timing that is most ideal for a specific engine and nitrous tune-up. In the end the best and correct method to determine timing in a car is to read the spark plugs. Due to all these variables, it is difficult to recommend a generic timing for a given amount of nitrous. However the information below is intended to provide a starting point. After this, it is best to use the spark plugs as an indicator as to what timing a specific engine requires. The spark plugs also will help with nitrous and fuel jetting as well as fuel pressure needs. One large variable that drives the ideal ignition timing is the "combustion efficiency". This is a combination of the cylinder head valve angle, combustion chamber size and burn characteristics, and piston dome design among other things. The more efficient the overall combustion efficiency is, the less timing is needed with nitrous. Note that when running large amount of nitrous, the old school rule of "take out two degrees per 50 HP of nitrous" is not ideal or wise. The following timing recommendations below are based on nitrous HP amounts and a factor called "Combustion Efficiency". Combustion Efficiency takes into account the piston dome, chamber size, valve angle, and other factors. It is split up into three categories, "High", "Medium", and "Low". The following reviews these: "High" – An engine with an exceptionally efficient and quick burn rate when running nitrous. Typically this would have a piston with a dish, flattop, or very small, flat dome design. Combustion chambers are small and valve angles are greatly reduced from the "factory" valve angle. Generic examples are engines with current high end race heads that have valve angles reduced 7-11 from stock, very small combustion chambers, and flat top piston that still maintain 13-14:1 compression ratios. "Medium" – An engine with a small and efficient chamber – An example could be a SBC with an 18 degree head with a moderate piston dome. **"Low"** – Older engines with factory valve angles. Pistons may have large domes to maintain high compression ratios - Large, open combustion chambers. An example would be a BBC engine with a 119cc open chamber and large dome piston. The following are some initial recommendations for timing. Be conservative and read your plugs. Run an 1/8th mile hit rather than a ½ mile pass to start to see initial plug strap readings. The "Plug" recommendation is based on NGK heat ranges. An equivalent Autolite or other brand can be used. **Note:** These are for V8's. For a 4 cylinder, cut these numbers in half. **Suggested Baseline Timing Combinations** | Nitrous
HP | Combustion
Efficiency | Timing | NGK Spark Plug or Equiv. | Fuel/Octane | |---------------|--------------------------|--------|--------------------------|-------------| | 200 | Low | 24 | -9 | 110+ | | 200 | 200 Medium | | -9 | 110+ | | 200 | 200 High | | -9 | 110+ | | | | | | | | 250 | Low | 22 | -10 | 112+ | | 250 | Medium | 20 | -10 | 112+ | | 250 | High | 18 | -10 | 112+ | | | | | | | | 300 | Low | 20 | -11 | 114+ | | 300 | Medium | 18 | -11 | 114+ | | 300 | High | 16 | -11 | 114+ | | | | _ | | | | 350 | Low | 18 | -11 | 116+ | | 350 | Medium | 16 | -11 | 116+ | | 350 High | | 14 | -11 | 116+ | NOS Technical Support: 1-866-GOHOLLEY A5079-SNOS Date: 3-22-10 wf